225=.092x^2+.64x+150.754

Simple and best practice solution for 225=.092x^2+.64x+150.754 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 225=.092x^2+.64x+150.754 equation:


Simplifying
225 = 0.092x2 + 0.64x + 150.754

Reorder the terms:
225 = 150.754 + 0.64x + 0.092x2

Solving
225 = 150.754 + 0.64x + 0.092x2

Solving for variable 'x'.

Combine like terms: 225 + -150.754 = 74.246
74.246 + -0.64x + -0.092x2 = 150.754 + 0.64x + 0.092x2 + -150.754 + -0.64x + -0.092x2

Reorder the terms:
74.246 + -0.64x + -0.092x2 = 150.754 + -150.754 + 0.64x + -0.64x + 0.092x2 + -0.092x2

Combine like terms: 150.754 + -150.754 = 0.000
74.246 + -0.64x + -0.092x2 = 0.000 + 0.64x + -0.64x + 0.092x2 + -0.092x2
74.246 + -0.64x + -0.092x2 = 0.64x + -0.64x + 0.092x2 + -0.092x2

Combine like terms: 0.64x + -0.64x = 0.00
74.246 + -0.64x + -0.092x2 = 0.00 + 0.092x2 + -0.092x2
74.246 + -0.64x + -0.092x2 = 0.092x2 + -0.092x2

Combine like terms: 0.092x2 + -0.092x2 = 0.000
74.246 + -0.64x + -0.092x2 = 0.000

Begin completing the square.  Divide all terms by
-0.092 the coefficient of the squared term: 

Divide each side by '-0.092'.
-807.0217391 + 6.956521739x + x2 = 0

Move the constant term to the right:

Add '807.0217391' to each side of the equation.
-807.0217391 + 6.956521739x + 807.0217391 + x2 = 0 + 807.0217391

Reorder the terms:
-807.0217391 + 807.0217391 + 6.956521739x + x2 = 0 + 807.0217391

Combine like terms: -807.0217391 + 807.0217391 = 0.0000000
0.0000000 + 6.956521739x + x2 = 0 + 807.0217391
6.956521739x + x2 = 0 + 807.0217391

Combine like terms: 0 + 807.0217391 = 807.0217391
6.956521739x + x2 = 807.0217391

The x term is 6.956521739x.  Take half its coefficient (3.47826087).
Square it (12.09829868) and add it to both sides.

Add '12.09829868' to each side of the equation.
6.956521739x + 12.09829868 + x2 = 807.0217391 + 12.09829868

Reorder the terms:
12.09829868 + 6.956521739x + x2 = 807.0217391 + 12.09829868

Combine like terms: 807.0217391 + 12.09829868 = 819.12003778
12.09829868 + 6.956521739x + x2 = 819.12003778

Factor a perfect square on the left side:
(x + 3.47826087)(x + 3.47826087) = 819.12003778

Calculate the square root of the right side: 28.620273195

Break this problem into two subproblems by setting 
(x + 3.47826087) equal to 28.620273195 and -28.620273195.

Subproblem 1

x + 3.47826087 = 28.620273195 Simplifying x + 3.47826087 = 28.620273195 Reorder the terms: 3.47826087 + x = 28.620273195 Solving 3.47826087 + x = 28.620273195 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.47826087' to each side of the equation. 3.47826087 + -3.47826087 + x = 28.620273195 + -3.47826087 Combine like terms: 3.47826087 + -3.47826087 = 0.00000000 0.00000000 + x = 28.620273195 + -3.47826087 x = 28.620273195 + -3.47826087 Combine like terms: 28.620273195 + -3.47826087 = 25.142012325 x = 25.142012325 Simplifying x = 25.142012325

Subproblem 2

x + 3.47826087 = -28.620273195 Simplifying x + 3.47826087 = -28.620273195 Reorder the terms: 3.47826087 + x = -28.620273195 Solving 3.47826087 + x = -28.620273195 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3.47826087' to each side of the equation. 3.47826087 + -3.47826087 + x = -28.620273195 + -3.47826087 Combine like terms: 3.47826087 + -3.47826087 = 0.00000000 0.00000000 + x = -28.620273195 + -3.47826087 x = -28.620273195 + -3.47826087 Combine like terms: -28.620273195 + -3.47826087 = -32.098534065 x = -32.098534065 Simplifying x = -32.098534065

Solution

The solution to the problem is based on the solutions from the subproblems. x = {25.142012325, -32.098534065}

See similar equations:

| 9(2n+2)=8(8n+8)+3 | | N/7-4=-2 | | 3r-19=11+5r | | 3(x-9)-4(2x+1)=x-31 | | 9m-5=40+4m | | 2x-1(9-5x)=2(8+x) | | 2(2n+4)=8(9n+9)+9 | | (2x-1)(2x-1)=(2x+2)(2x+2) | | kx^2+(2k-6)x+k-5=0 | | 2x-3+6= | | 3/4(2x-5)=(x-1) | | -4(t-1)+6t=8t-3 | | 5y+3(y-6)=6(y+1)-3 | | 4x^2-4x+1=4x^2+8+4 | | 5(10+2)/2(20)-14= | | 10y+11z=29.5 | | y+y+y*1/3+y*1/3=120 | | (-2x^6/5)(5x^1/10) | | 5x+4=-3+2x+19 | | 5+(-9)+1-(-10)= | | d+17/2=5/1/13 | | 9x+15=16x-13 | | 8x-2=x+2 | | 5(x-2)+8=2x+3(1+x) | | Y^2-10y-24= | | w-4/24 | | 9/(k-7)=6/k | | -2+w/8 | | 3(2d-1)-(d-1)= | | 5x(5y+3x-6xy^2)=0 | | 26-4s=9g | | 6(2n+5)=6(6n+9)+5 |

Equations solver categories